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What Am I Talking About?

Background

Naive and Staggered Fermions on an A4 lattice

Naive and Staggere Fermions on an A∗4 lattice

Final Remarks and Sales Pitch



The isotropic lattices in every dimension

The notation comes from the book by Conway and Sloane.

I Zn; The hypercubic lattices. Automorphism group has 2n n!
elements (=384 in 4-d).

I An; Also called ”simplicial.” Group order = 2 · n! (=240 in
4-d). In 2-d, triangular lattice. FCC in 3-d. Pure gauge
models were simulated on an A4 lattice.

I A∗n; The lattice dual to An. In 3-d A∗3 is the BCC lattice.

I Dn; Also known as the ”checkerboard” lattice. D3 = A3 is
FCC. D4 = F4 is self-dual. Automorphism group of D4 has
1152 elements. D3, D4, and D5 are the densest possible
lattice packings in 3, 4 and 5 dimensions.

I Hyperdiamond lattice is not a Bravais lattice. Union of 2 An

lattices.



Extremely Abridged History

Noticed a long time ago [Celmaster and Krausz, (1983)] that
fermions on non-cubic lattices are problematic:∑

ψ̄n ei · γ (ψn+ei − ψn−ei )

Equations for doublers break rotational symmetry. There must be
a symmetry connecting doublers to have rotational invariance and
a reduction to staggered fermions.

Could add Wilson term. On D4 you have rotational symmetry
broken only at O(a4).

In 4-d, staggered fermions have only been satisfactorily formulated
on hypercubic lattices.

Drouffe and Moriarty (1983) did simulations of pure SU(2) and
SU(3) gauge theories on the A4 lattice.



A Lattice Fermion Popularity Contest

Counting papers on hep-lat since 2017 using lattice fermions:

I 155 Wilson/clover,

I 86 domain wall

I 62 staggered

I 57 overlap

I 0 on non-cubic lattices



The A4 lattice

Coordinate vector of Ad lattice:
(n1, n2, . . . , nd+1) where

∑
ni = 0 Surface in Zd+1 lattice.

Nearest neighbor vectors:

ε12 = (1,−1, 0, 0, 0), ε13 = (1, 0,−1, 0, 0), . . . , ε45 = (0, 0, 0, 1,−1)

and negatives of these.
So 20 neighbors in 4-d, compared to 8 for hc.
Take primitive lattice vectors τµ = εµ5:

τ 1 = (1, 0, 0, 0,−1), . . . , τ 4 = (0, 0, 0, 1,−1)

Reciprocal lattice vectors, bµ, defined by bµ · τ ν = 2πδµν are

b1 = κ(4,−1,−1,−1,−1), . . . ,b4 = κ(−1,−1,−1, 4,−1)

with κ = 2π/5, generate the lattice A∗4.



Also need a set of orthonormal vectors on A4:
e1 = (1,−1, 0, 0, 0)/

√
2, e2 = (1, 1,−2, 0, 0)/

√
6,

e3 = (1, 1, 1,−3, 0)/
√

12, e4 = (1, 1, 1, 1,−4)/
√

20.



The action:

SA =

√
2

8
i
∑
n

5∑
j>i

ψ̄n γiγj (ψn+εij − ψn−εij )

{γi , γj} = 2δµν

The inverse free propagator in momentum space:

D(k) ∝
5∑

j>i

γiγj sin(k · εij)

which leads to the propagator

S(k) ∝
∑
j>i

γiγj sin(k · εij)/
∑
j>i

sin2(k · εij)



The modes

Poles at k = 0 and at
k = bµ/2

and sums of 2, 3 and all 4 of these, 16 in total.

5 modes at |k| =
√

4
5π ⇔

π
5 (−4, 1, 1, 1, 1), . . . π5 (1, 1, 1, 1,−4)

10 modes at |k| =
√

6
5π ⇔

π
5 (3, 3,−2,−2,−2), . . .



Symmetries connecting modes

The action is invariant under

ψn → T (n)ψn, ψ̄n → ψ̄nT (n)

where
T (n) = (−1)nµγµ

and products of these.

Since all modes are equivalent need only examine the one at k ≈ 0



For k ≈ 0

D(k) ≈ − 1√
5

∑
j>i

γiγj k · εij ≡ i
4∑

µ=1

Γµk · eµ

Solving for Γµ:

Γµ = i
5∑

i=1

e iµγiA

where

A =
1√
5

5∑
i=1

γ i

The Γµ comprise a set of Euclidean Dirac matrices:

{Γµ, Γν} = 2δµν

Thus the action describes 16 Dirac fermions. We also have

Γ5 = A =
1√
5

5∑
i=1

γ i



Short paws



Symmetry group of the A4 lattice

Permuations of (n1, n2, n3, n4, n5), the ”symmetric” group S5.

Negation of all the coordinates is also a symmetry.

So 2 X 5! = 240 elements.

S5 is generated by single exchanges: e.g. (21345)

The action is invariant provided

ψn →
1√
2

(γ1 − γ2)ψn′

ψ̄n → ψ̄n′
1√
2

(γ1 − γ2).



Representations of some lattice objects

εij , γiγj , Uij = e i Aij transform as 10-d rep. of S5.

Orthogonality of characters → 10 = 4⊕ 6

iγiγj =
√

2
5 ε

µ
ij Γµ + i

∑
ν>µ

(e iµe
j
ν − e jµe

i
ν)ΓµΓν

showing reduction to vector and antisymmetric tensor.



Likewise:
Aij = εµijBµ +

∑
ν>µ

(e iµe
j
ν − e jµe

i
ν)Yµν

the naive continuum limit:∫
d4xψ̄{Γµ(∂µ − igBµ) + gσµνYµν}ψ + mψ̄ψ

Yµν is short range → four-fermion interaction with coupling of
order a2g2.



The Action for the Link Variables

action.jpeg



Absence of additive mass renormalization

Additive mass renormalization is forbidden, even though there is no
exact axial symmetry. The action

SA =

√
2

8
i
∑
n

5∑
j>i

ψ̄n γiγj Un,ij ψn+εij + h.c .

is invariant under negation of all the coordinates provided

Uij → U†ij ; ψn → ψ−n; ψ̄n → −ψ̄−n

This implies for the full propagator:

S(−p) = −S(p)

which forbids a mass term.

Mass or Wilson terms are not invariant.



No exact chiral symmetry → fermion determinant is not real
(except for free fermions).

I In a simulation, the pseudo-fermion action

φ(D†D + m2)−1φ

is real and ≈ det(D + m).

I Or to get to reality you can double the fermions
ψ → (ψ1, ψ2) with a mass term m ψσ3ψ.

I Or go to a hyperdiamond lattice (A4 ∪ A4) with ψ1 on one A4

with mass m and ψ2 on the other with mass −m. The
coupling → axial-vector interaction mixing 1 and 2.



Axial Vector Interaction

Using

γi = −i
∑
µ

e iµΓµΓ5 +
1√
5

Γ5

a rotationally invariant, axial vector interaction is∑
n

5∑
i

(ψ̄n γi ψn+ri + ψ̄n+ri γi ψn)Zi(n)

the same for all doublers, where

r1 = (4,−1,−1,−1,−1), . . . , r5 = (−1,−1,−1,−1, 4)

generate an A∗4 sublattice. So axial currents live on a dual
sublattice.

Naive continuum limit ⇒ ψ̄ ΓµΓ5ψ A5
µ + ψ̄Γ5ψ φ



Reduction to Staggered Fermions

Naive action is diagonalized by:

ψn → γn1
1 γ

n2
2 γ

n3
3 γ

n4
4 γ

(n1+n2+n3+n4)
5 ψn

leading to the staggered fermion action

Sst =
∑

χ̄n ηi (n)ηj(n) (χn+εij − χn−εij ) + mχ̄nχn

where χn is a single anticommuting variable and the phases are

η1 = 1, η2 = (−1)n1 , η3 = (−1)n1+n2 , η4 = (−1)n1+n2+n3 ,

η5 = (−1)n1+n2+n3+n4



Can make blocks of 16 points as on hypercubic lattice.

Degrees of freedom in a block couple to degrees of freedom in 20
neighboring blocks.

All the symmetries of the naive fermions carry through to the
staggered case. There is no additive mass renormalization.



Staggered Blocks on Triangular Lattice



Fermions on an A∗4 lattice

The action:

S =
5

16

∑
n

5∑
j

ψ̄n γi (ψn+f j − ψn−f j )

where

f1 = κ(4,−1,−1,−1,−1), . . . , f5 = κ(−1,−1,−1,−1, 4)

with κ = 1/
√

20.
Take the first 4 to be primitive vectors. The doubling symmetry is
then

ψn → (−1)nµγµψn



The propagator

S(k) ∝
∑
i

γi sin(k · f i )/
∑
i

sin2(k · f i )

has a mode at k = 0, and 10 modes at

α(1,−1, 0, 0, 0), . . . , α(0, 0, 0, 1,−1); α = 2π/
√

5

and 5 modes at

α(0, 1, 1,−1,−1), . . . , α(1, 1,−1,−1, 0)



For k ≈ 0 the inverse propagator

⇒ 2√
5

∑
i

γi k · f i ≡
4∑

µ=1

Γµk · eµ

⇒ Γµ =
2√
5

5∑
i=1

f i · eµγi

which obey
{Γµ, Γν} = 2δµν

and as for A4

Γ5 =
1√
5

5∑
i=1

γ i



The naive continuum limit is∫
d4xψ̄{Γµ(∂µ − igBµ) + gΓ5 φ}ψ + mψ̄ψ

Absence of additive mass renormalization works the same.

The staggered action is

Sst =
∑

χ̄n ηi(n) (χn+f i − χn−f i ) + mχ̄nχn

where

η1 = 1, η2 = (−1)n1 , η3 = (−1)n1+n2 , η4 = (−1)n1+n2+n3 ,

η5 = (−1)n1+n3



Axial Interactions on the A∗4 lattice

An axial interaction with the same charge for all the doublers is∑
n

5∑
j>i

(ψ̄n γiγj ψn+f i−f j + ψ̄n+f i−f j γiγj ψn)Aij

The vectors f i − f j generate an A4 sublattice.

So, again, axial interactions live on a dual sublattice.



The Last Slide

Fermions on A4 and A∗4 lattices are interesting (at least to one
person), and might be useful in simulations. Drouffe and Moriarty
claimed that (quenched) simulations on A4 are faster than on
hypercubic.

Mean field calculations, including 1/d corrections, are better. The
corrections are smaller because you’re really expanding in
1/(kissing number).

The duality between vector and axial vector currents paralleling the
duality between A4 and A∗4 lattices is interesting.

Would be interesting to find a fermion formulation on Dn

(D4 = F4) lattices, as they have more rotational symmetry (broken
at O(a4)). At least someone could try Wilson fermions.



all.jpg



Odd numbers of exchanges, e.g. (23145) or (21435) are rotations.
Subgroup of S5 called A5, the alternating group.

In even dimensions, negation of all the coordinates has det = 1, a
180 deg rotation.

S5 has representations of dimensions 1, 1, 4, 4, 5, 5 and 6.



Chiral Symmetry

Recall

Γ5 =
1√
5

5∑
i=1

γ i

Can’t do:
ψn → e iφ Γ5 ψn

No doubling symmetry.
Chiral transformation same for all modes:

ψn → ψn +
i√
5
φ
∑
j

γj
∑
σj

ψn+σj

e.g.

σ1 = (0, 1, 1,−1,−1), (0, 1,−1, 1,−1), . . . (0,−1,−1, 1, 1)



The Anomaly



Hexagonal Lattice



Short Sales Pitch

More nearest-neighbors ⇒
I longer correlation length for given bare coupling constant.

I Faster thermalization times ⇒ Shorter auto-correlation times?
At least in a disordered phase.

I More rotational symmetry.

I

The Bad: more nearest-neighbors ⇒
I More computation per simulation step.

I More link degrees of freedom per site.
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